

**Q1.** Find  $m$  if  $P(x) = x^4 + 3x^3 + mx^2 + 7x + 10$  is divisible by  $x + 2$ .

- A. 3
- B. 5
- C. 7
- D. -4

**Q2.** Factorize  $x^4 - x^2 + 1$

- A.  $(x^2 + 1)(x^2 - 1)$
- B.  $x^2(x^2 - 1) + 1$
- C.  $(x^2 + \sqrt{3}x + 1)(x^2 - \sqrt{3}x + 1)$
- D.  $(x^2 - x + 1)^2$

**Q3.** Solve the equation  $x^3 - 2x^2 - x + 2 = 0$ .

- A.  $x_1 = 2, x_2 = -2, x_3 = -1$
- B.  $x_1 = 2, x_2 = -2, x_3 = 1$
- C.  $x_1 = 1, x_2 = -1, x_3 = 2$
- D.  $x_1 = 1, x_2 = -1, x_3 = -2$

**Q4.** The 12th term of an arithmetic progression is 18, and the sum of the first 12 terms is 288. Find  $N$  such that the sum of the first  $N$  terms is 0.

- A. 43
- B. 56
- C. 64
- D. 72

**Q5.** The sum of the first two terms of a geometric progression is 21, and the sum to infinity is 28. Find the two possible values of the common ratio,  $r$ .

- A.  $\pm 1$
- B.  $\pm \frac{1}{2}$
- C.  $\pm \frac{1}{4}$
- D.  $\pm \frac{2}{3}$

**Q6.** Let  $B$  be a number that is divisible by both 3 and 16 and has exactly 21 positive divisors. Find the remainder when  $B$  is divided by 7.

- A. 2
- B. 3
- C. 4
- D. 5

**Q7.** You have 3 groups of beads: 4 different black beads, 2 different white beads, and 3 different gold beads. Beads of the same color must be kept together. How many different necklaces can you make?

- A. 144
- B. 172
- C. 288
- D. 344

**Q8.** What is the remainder when  $555^{555} + 999^{99}$  is divided by 8?

- A. 7
- B. 5
- C. 2
- D. 0

**Q9.** What is the coefficient of the term containing  $x^4y^6$  in the expansion of  $(3x^2 - 2y^3)^5$ ?

- A. 0
- B. 64
- C. 124
- D. 164

**Q18.** What is the remainder when  $n(n^2 - 1)(5n + 2)$  divide by 24 for all natural values of n.

(Answer: 0)

**Q19.** ABCD is a trapezoid with bases AB and DC. AB = 14, BC = 4, CD = 10 and AD = 12 are given. Find the area of the trapezoid.

**Q10.** Find  $\lim_{x \rightarrow 3} \frac{(x-3)(4x+7)}{4-\sqrt{x+13}}$ .

- A. 0
- B.  $\infty$
- C. 76
- D. -76

**Q11.** Cup A is 40% filled with water. Cup B, which is identical to Cup A, is completely filled with a mixed solution containing 70% water and 30% hydrochloric acid. 60% of the content in Cup B is then poured into Cup A. After mixing, 60% of the mixed solution in Cup A is poured back into Cup B. Find the percentage of water in Cup A now.

- A. 46%
- B. 58%
- C. 82%
- D. 94%

**Q12.** Amirah has 2 bottles of jellybeans, A and B. Bottle A has 400 jellybeans while bottle B has 300 jellybeans. 75% of the jellybeans in bottle A are red while the rest are yellow; 50% of the jellybeans in bottle B are red while the rest are yellow. If Amirah moves some jellybeans from bottle A to bottle B such that 80% of the jellybeans in bottle A are now red and 40% of those in bottle B are yellow, find the number of jellybeans Amirah moves from bottle A to bottle B.

- A. 250
- B. 200
- C. 156
- D. 142

**Q13.** An arrow is shot upward on a planet. Its height (in meters) after t seconds is given by

$$h(t) = 80t - t^2.$$

What will be the velocity of the arrow when it strikes the ground?

- A. 20
- B. 40

C. 80

D. 160

**Q14.** If  $x + \frac{1}{x} = 3$ , what is the value of  $x^4 + \frac{1}{x^4}$ ?

A. 43

**B. 47**

C. 52

D. 56

**Q15.** The Australian 50 cent coin has the shape of a regular dodecagon, which is a polygon with 12 sides.

Eight of these 50 cent coins will fit exactly on an Australian \$10 note as shown. What fraction of the \$10 note is not covered?



A.  $\frac{1}{2}$

B.  $\frac{1}{3}$

**C.  $\frac{1}{4}$**

D.  $\frac{2}{3}$

**Q16.** Solve 
$$\begin{cases} \sqrt{\frac{x+5}{2x-1}} > 2 \\ \frac{4-3x}{\sqrt{40-3x}} < \sqrt{5} \end{cases}$$

(Answer:  $x \in (\frac{1}{3}, \frac{3}{2})$ )

**Q17.** Find the value of x.

$$\frac{3 - \log_{16} 4}{\log_{16}(x+2)} - 1 = \frac{\log_4(10-x)}{\log_4(x+2)}$$

(Answer: No real solution)

**Q18.** What is the remainder when  $n(n^2-1)(5n+2)$  divide by 24 for all natural values of n.

(Answer: 0)

**Q19.** A board has 5 permanent and 5 elected members (total 10). A policy is approved if:

1. At least 7 people vote “Yes,”
2. All 5 permanent members vote “Yes.”

Assuming every member votes, how many ways can the policy be approved?

**(Answer: 26)**

**Q20.** Find the value of the expression below.

$$\sqrt[3]{26 + 15\sqrt{3}} + \sqrt[3]{26 - 15\sqrt{3}}$$

(Answer: 4)