

**Q1.** Simplify the expression

$$\left(\frac{a^{-4} \cdot b^{-2}}{b^6}\right)^2 \times \left(\frac{a^3 \cdot b^4}{b^{-3}}\right)^3 \times \left(\frac{b^{-2}}{a^3 \cdot b^{-2}}\right)^{-1}$$

- A.  $a^4b^5$
- B.  $a^{-4}b^{-2}$
- C.  $a^{-3}b^4$
- D.  $a^2b^3$

**Q2.** If  $p = 2^{3k-1}$  and  $16p^2 = 2^{5k+2}$ , find the value of  $k$ .

- A. -1
- B. 0
- C. 1
- D. 2

**Q3.** Find the value of  $x^2$ .

$$\sqrt[3]{x+6} - \sqrt[3]{x-6} = 3.$$

- A.  $\frac{847}{27}$
- B.  $\frac{125}{27}$
- C.  $-\frac{1097}{27}$
- D.  $-\frac{367}{27}$

**Q4.** Two squares have sides  $(2x+1)$  cm and  $(x+9)$  cm respectively. The sum of their areas is 193 cm<sup>2</sup>. Find the area of the larger square.

- A. 49 cm<sup>2</sup>
- B. 81 cm<sup>2</sup>
- C. 144 cm<sup>2</sup>
- D. 196 cm<sup>2</sup>

**Q5.** Find  $(x^2 + \frac{1}{x^2})^2$  if  $x$  is a root of the equation  $(x + \frac{1}{x})^2 - 12(x + \frac{1}{x}) + 36 = 0$ .

- A. 2356
- B. 1156
- C. 3146
- D. 2146

**Q6.** A factory produces 80 gadgets on the first day and increases production by 40 gadgets each day. How many days will it take for the factory to produce a total of 3600 gadgets?

- A. 12 days
- B. 14 days
- C. 15 days
- D. 17 days

**Q7.** In an arithmetic sequence, the sum of the 3rd and 5th terms is 46, and the product of the 4th and 6th terms is 805. Find the 3rd term.

- A. 14
- B. 15

C. 16

**D.17**

**Q8.** A ball is dropped from a height of 200 cm. Each time it bounces, it reaches 60% of its previous height. What is the total distance traveled when it hits the ground for the fifth time?

A. 654.54

**B. 722.24**

C. 461.14

D. 514.74

**Q9.** Solve the equation

$$\log_{x-2}(x^2 + 4) = \log_{x-2}(3x + 1).$$

A. -3

B. 3

C. 4

**D. no solution**

**Q10.** In a contest, 5 men and 8 women participate. Two winners are selected at random without replacement. What is the probability that at least one of the winners is a man?

A.  $\frac{14}{39}$

**B.  $\frac{25}{39}$**

C.  $\frac{11}{39}$

D. 1

**Q11.** A coin is tossed and a die is rolled. Find the probability that the coin shows tails **or** the die shows an odd number.

A.  $\frac{3}{4}$

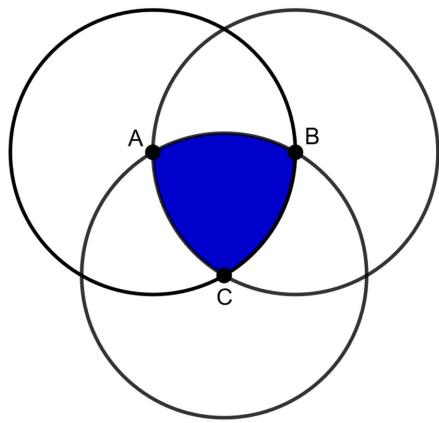
**B.  $\frac{1}{3}$**

C.  $\frac{2}{3}$

D.  $\frac{1}{2}$

**Q12.** The roots of the equation  $x^2 - 4x + p = 0$  are also the roots of the equation  $x^3 + qx + 16 = 0$ .

Find  $p + q$ .


**A. -8**

B. -6

C. -4

D. -1

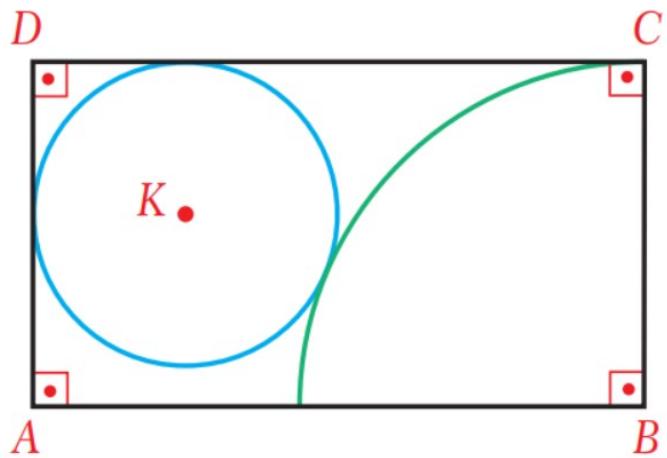
**Q13.** In the figure below, three identical circles with a diameter of 20 centimeters and centers A, B, and C are arranged so that each circle passes through the center of the other two. What is the area of the blue region in square centimeters? Consider  $\pi = 3$  and  $\sqrt{3} = 1.7$ .



A. 65  
 B. 130  
 C. 195  
 D. 260

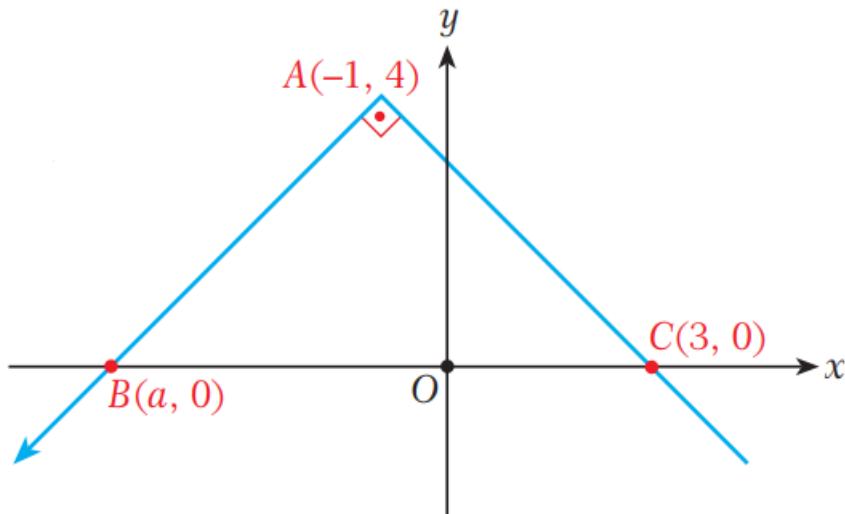
**Q14.** The diagonals of a parallelogram are 25 cm and 20 cm long and meet at an angle of  $150^\circ$ . Find the area of the parallelogram.

A. 125  
 B.  $25\sqrt{5}$   
 C.  $125\sqrt{2}$   
 D.  $250\sqrt{2}$


**Q15.** Cody climbs a 7-step ladder by taking 1, 2, or 3 steps at a time. How many different ways can he reach the top?

A. 274  
 B. 134  
 C. 81  
 D. 44

**Q16.** Solve  $\sin^4 x + \cos^4 x = \frac{1}{2}$ .


(answer:  $x = \frac{\pi}{4} + \pi k$  or  $x = \frac{3\pi}{4} + \pi k$ ,  $k \in \mathbb{Z}$ )

**Q17.** In the figure, ABCD is a rectangle,  $AB = 8 \text{ cm}$  and the circle and quarter circle are tangent. If the radius of the smaller circle is  $2 \text{ cm}$ , what is the radius of  $\odot B$ ?



(Answer: 4.5 cm)

**Q18.** In the figure, find the value of a.



(Answer: -5)

**Q19.** Solve the system equation

$$\begin{cases} \frac{1}{x} - \frac{1}{y} = \frac{3}{20} \\ \log_5 x + \log_5 y = 2 + \log_5 4 \end{cases}$$

(Answer: (5,20))

**Q20.** If  $g(x) + 4 \cdot g\left(\frac{1}{x}\right) = x + \frac{1}{x}$ , find  $g(x)$  in terms of x.

(Answer:  $g(x) = \frac{x^2+1}{5x}$ )