

Brainiacs Math Olympiad Preliminary Round Sample Exam Paper 2

Category V – grades 11 and 12

Q1.

Solve for all values of x that satisfy the equation:

$$(x+2)(x+4)(x-6)(x-8) = 2925$$

- A. $\{-7, -11\}$
- B. $\{7, 11\}$
- C. $\{7, -11\}$
- D. $\{-7, 11\}$**

Q2.

A is a number which is divisible by both 2 and 9 and A has exactly 15 positive divisors. Find the remainder when A is divided by 5?

- A. 1
- B. 2
- C. 3
- D. 4**

Q3.

How many different necklaces can we make by threading 3 different red beads, 3 different green beads and 3 different yellow beads onto a chain if beads of the same color must be kept together?

- A. 240
- B. 216**
- C. 196
- D. 174

Q4.

What is the remainder when $777^{777} + 222^{222}$ is divided by 8 ?

- A. 2
- B. 7
- C. 1**
- D. 4

Q5.

What is the coefficient of the term containing $x^{12}y^6$ in the expansion of $(x^3 - 2y^2)^7$?

- A. 84
- B. -280**
- C. -324
- D. 560

Q6.

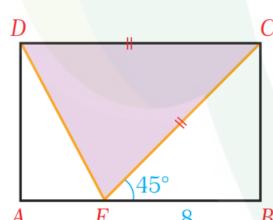
What is the remainder when $n(n^2 - 1)(5n + 2)$ divide by 24 for all natural values of n.

- A. 0
- B. 1
- C. 8
- D. 12

Q7.

What is the answer of $\sqrt{3 + 8\sqrt{7 + 4\sqrt{3}}} - \sqrt{3} = ?$

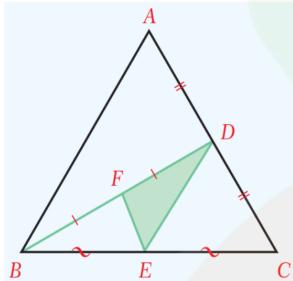
- A. 1
- B. 2
- C. 3
- D. 4


Q8.

If $g(x) + 2 \cdot g\left(\frac{1}{x}\right) = x$, find $g(x)$ in terms of x.

- A. $\frac{2 - x^2}{3x}$
- B. $\frac{2}{3x}$
- C. $\frac{2x}{3}$
- D. $\frac{2 - x}{3}$

Q9.


In the figure, ABCD is a rectangle, $EB = 8$, $m(\angle BEC) = 45^\circ$ and $EC = DC$. Find the area of $\triangle CDE$.

- A. $16\sqrt{2}$
- B. $32\sqrt{2}$
- C. $36\sqrt{3}$
- D. $18\sqrt{3}$

Q10.

The figure shows a triangle ABC. BD is the median of side AC in $\triangle ABC$, DE is the median of side BC in $\triangle BCD$, and EF is the median of side BD in $\triangle BDE$. Given that $A(\triangle DEF) = 5 \text{ cm}^2$, find $A(\triangle ABC)$.

- A. 25 cm^2
- B. 30 cm^2
- C. 35 cm^2
- D. 40 cm^2**

Q11.

Two points D and E lie respectively on sides AB and AC of a triangle ABC.

Given that $DE \parallel BC$, $AE = 2 \text{ cm}$, $EC = 3 \text{ cm}$ and $A(BCED) = 42 \text{ cm}^2$, find $A(\triangle ABC)$.

- A. 90 cm^2
- B. 82 cm^2
- C. 65 cm^2
- D. 50 cm^2**

Q12.

ABCD is a trapezoid with bases AB and DC. $AB = 26$, $BC = 16$, $CD = 6$ and $AD = 12$ are given. Find the area of the trapezoid.

- A. 142.4
- B. 153.6**
- C. 162.4
- D. 164.6

Q13.

$$\text{Find } \lim_{x \rightarrow \frac{7\pi}{2}} \frac{\sin x + \cos x}{\cos 2x}.$$

- A. $\frac{\sqrt{2}}{2}$**
- B. $-\frac{\sqrt{2}}{2}$
- C. $\sqrt{2}$
- D. 0

Q14.

Find $\lim_{x \rightarrow 3} \frac{x^2 - 9}{2 - \sqrt{x + 1}}$.

- A. -24
- B. 24
- C. -10
- D. 10

Q15.

An arrow is shot upward on a planet. Its height (in meters) after t seconds is given by $h(t) = 60t - 0.6t^2$.

What will be the velocity of the arrow when it strikes the ground?

- A. 45
- B. 50
- C. 60
- D. 75

Q16.

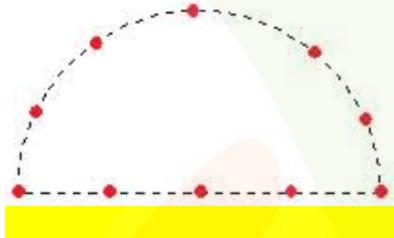
Given that $f(4 \cdot g(x) + 7) = x^3 - 2x^2 + 3$ and $g(x) = 1 - x$, find $f'(-1)$.

- A. -1
- B. $-\frac{15}{4}$
- C. $-\frac{13}{4}$
- D. $-\frac{17}{4}$

Q17.

Find $a + b + c$, so that $f(x) = ax^3 - 3x^2 + bx + c$ has an inflection point at the point $(-1, 1)$ and a local extremum at $x = -2$.

- A. -1
- B. 0
- C. 2
- D. 3


Q18.

Jack has 5 different history books and 4 different math books. In how many ways can he arrange them all on a shelf so that the history books are together and all the books are between two math books?

- A. 2640
- B. 2880
- C. 5160
- D. 8640

Q19.

The figure shows ten points. Three of the points are chosen at random to form a triangle. How many different triangles can be constructed?

- A. 90
- B. 100
- C. 110**
- D. 120

Q20.

A number is selected at random from the set $A = \{1, 2, 3, \dots, 180\}$. What is the probability that the selected number is neither divisible by 3 nor divisible by 5?

- A. $\frac{4}{15}$
- B. $\frac{8}{15}$**
- C. $\frac{11}{15}$
- D. $\frac{13}{15}$