

Grades 11 and 12

1. A spherical object falls through water at constant speed. Three forces act on the object. Which diagram, showing these three forces to scale, is correct?

2. A force acting on a moving ball causes its motion to change. This force stays constant. What makes the force produce a greater change in the motion of the ball?

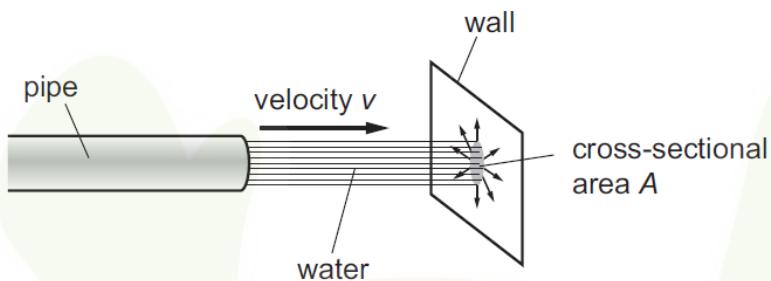
A decreasing the total mass of the ball

B increasing the temperature of the ball

C using a ball with a hollow centre but the same mass

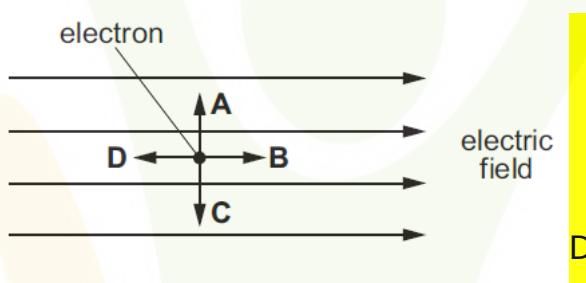
D using a different material for the ball so that it has a lower density but the same mass

3. Diffraction is a term used to describe one aspect of wave behaviour. What does diffraction make possible?


A the ability to hear around corners

B the ability to hear high frequency and low frequency sound waves

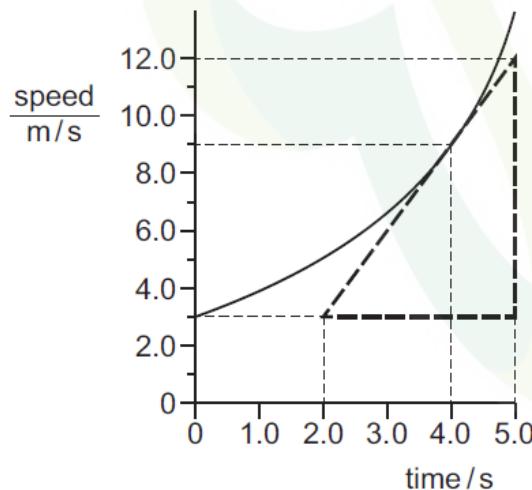
C the ability to hear loud and quiet sounds


D the ability to hear sound through a brick wall

4. Water flows out of a pipe and hits a wall. When the jet of water hits the wall, it has horizontal velocity v and cross-sectional area A . The density of the water is ρ . The water does not rebound from the wall. What is the force exerted on the wall by the water?

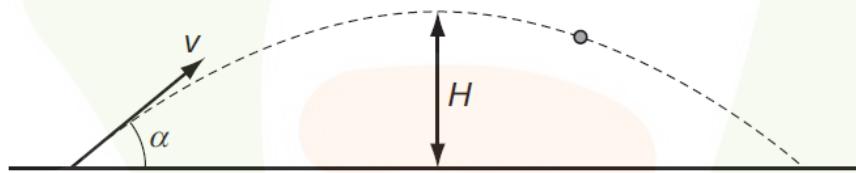
A. $\rho \cdot v / A$ B. $\rho \cdot v^2 / A$ C. $\rho \cdot A \cdot v$ D. $\rho \cdot A \cdot v^2$

5. The diagram shows an electron in a uniform electric field. In which direction will the field accelerate the electron?



6. One property Q of a material is used to describe the behaviour of sound waves in the material. Q is defined as the pressure P of the sound wave divided by the speed v of the wave and the surface area A of the material through which the wave travels: What are the SI base units of Q ?

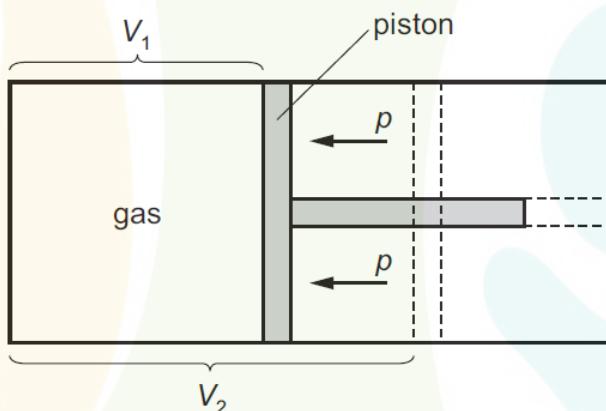
$$Q = \frac{P}{vA}$$


A $\text{kg m}^2 \text{s}^{-3}$ B $\text{kg m}^{-3} \text{s}^{-1}$ C $\text{kg m}^{-4} \text{s}^{-1}$ D $\text{kg m}^{-2} \text{s}^{-2}$

7. The curved line on the graph shows the motion of a car. What is the acceleration of the car at the time of 4.0 s?

A 0.33 m/s^2 B 0.44 m/s^2 C 2.3 m/s^2 D 3.0 m/s^2

8. A cannon fires a cannonball with an initial speed v at an angle α to the horizontal. Which equation is correct for the maximum height H reached?

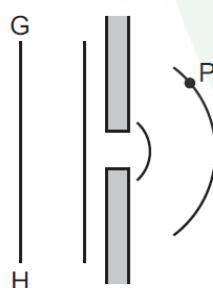

A $\frac{vsina}{2g}$

B $\frac{gsina}{2v}$

C $\frac{(vsina)^2}{2g}$

D $\frac{g^2sina}{2v}$

9. A gas is enclosed inside a cylinder which is fitted with a frictionless piston. Initially, the gas has a volume V_1 and is in equilibrium with the external pressure p . The gas is then heated slowly so that it expands at constant pressure, pushing the piston back until the volume of the gas has increased to V_2 . How much work is done by the gas during this expansion?


A. $p(V_2 - V_1)$

B. $p(V_2 - V_1)/2$

C. $p(V_2 + V_1)$

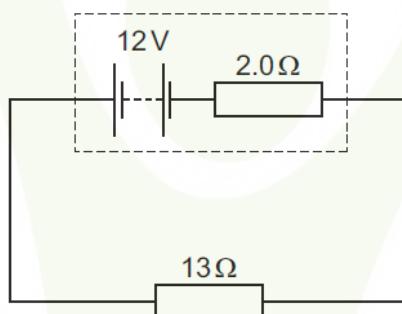
D. $p(V_2 + V_1)/2$

10. A monochromatic plane wave of speed c and wavelength λ is diffracted at a small aperture. The diagram illustrates successive wavefronts. After what time will some portion of the wavefront GH reach point P?


A $3\lambda/2c$

B $2\lambda/c$

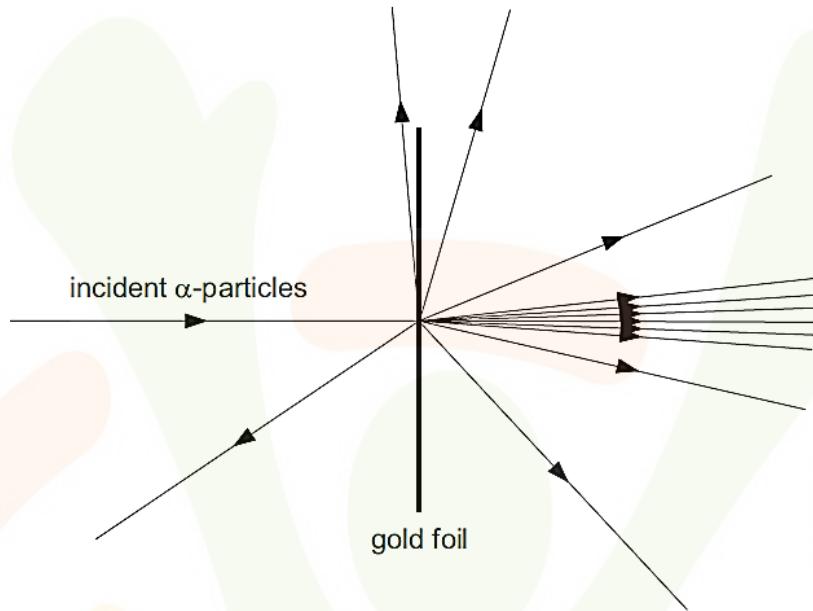
C $3\lambda/c$


D $4\lambda/c$

11. A stationary wave of frequency 80.0 Hz is set up on a stretched string of length 210 cm. What is the speed of the waves that produce this stationary wave?

A 56.0 m s^{-1} B 112 m s^{-1} C 5600 m s^{-1} D 11200 m s^{-1}

12. A power supply of electromotive force (e.m.f.) 12 V and internal resistance 2.0Ω is connected in series with a 13Ω resistor. What is the power dissipated in the 13Ω resistor?



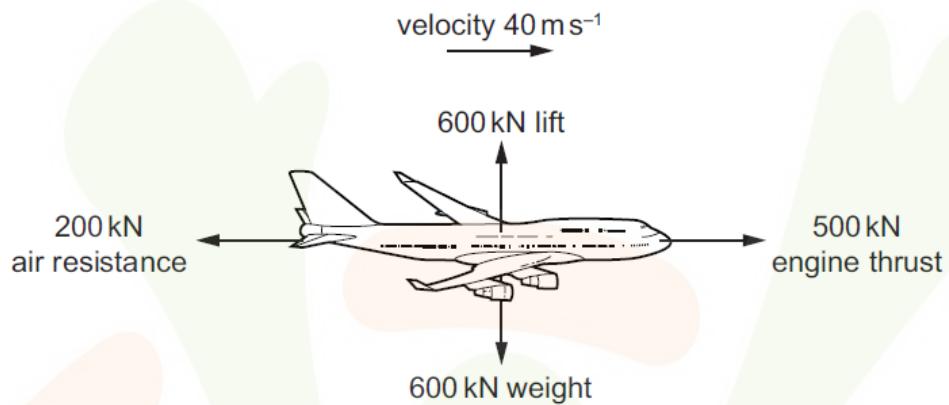
A 8.3 W B 9.6 W C 10 W D 11 W

13. Polarisation is a phenomenon associated with a certain type of wave. Which condition must be fulfilled if a wave is to be polarised?

A It must be a light wave.
 B It must be a longitudinal wave.
 C It must be a radio wave.
 D It must be a transverse wave.

14. A thin gold foil is bombarded with α -particles as shown. The results of this experiment provide information about the

A binding energy of a gold nucleus.
 B energy levels of electrons in gold atoms.
 C size of a gold nucleus.
 D structure of a gold nucleus.


15. Two metals, A and B, have work functions of 4 eV and 10 eV, respectively. Which metal has the higher threshold wavelength for the photoelectric effect?

A) Metal A
 B) Metal B
 C) Both have the same threshold wavelength
 D) Neither

16. An experiment is done to measure the resistance of a wire. The current in the wire is 1.0 ± 0.2 A and the potential difference across the wire is 8.0 ± 0.4 V. What is the resistance of the wire and its uncertainty?

A (8.0 ± 0.2) Ω
 B (8.0 ± 0.6) Ω
 C (8 ± 1) Ω
 D (8 ± 2) Ω

17. The force diagram shows an aircraft accelerating. At the instant shown, the velocity of the aircraft is 40 m s^{-1} . At which rate is its kinetic energy increasing?

A 2.4 MW B 8.0 MW C 12 MW D 20 MW

18. A car of mass 1400 kg is travelling on a straight, horizontal road at a constant speed of 25 m s^{-1} . The output power from the car's engine is 30 kW. The car then travels up a slope at 2° to the horizontal, maintaining the same constant speed. What is the output power of the car's engine when travelling up the slope?

A 12 kW B 31 kW C 42 kW D 65 kW

19. Light of wavelength 600 nm is incident on a pair of slits. Fringes with a spacing of 4.0 mm are formed on a screen. What will be the fringe spacing when the wavelength of the light is changed to 400 nm and the separation of the slits is doubled?

A 1.3 mm
B 3.0 mm
C 5.3 mm
D 12 mm

20. A distant star is receding from the Earth with a speed of $1.40 \times 10^7 \text{ m s}^{-1}$. It emits light of frequency $4.57 \times 10^{14} \text{ Hz}$. The speed of light is $3.00 \times 10^8 \text{ m s}^{-1}$. The Doppler effect formula can be used with light waves. What will be the frequency of this light when detected on Earth?

A $2.04 \times 10^{13} \text{ Hz}$
B $4.37 \times 10^{14} \text{ Hz}$
C $4.57 \times 10^{14} \text{ Hz}$
D $4.79 \times 10^{14} \text{ Hz}$