

Cayden Shaffer

Whitewater High School, Fayetteville, GA

**Engineering
Technology: Statics &
Dynamics**

On average, 51% of a rocket engine's weight is in the cooling system, so finding an engine design that would drastically reduce the engine's weight, complexity, and production cost would be extremely beneficial. I believe that small one-stage rockets will be the main method for smaller organizations to reach orbit shortly. The engine must be efficient at both sea level and in space to achieve this. Since the start of spaceflight in the 1960s, many innovations on the typical rocket engine have been theorized, but few have been adopted. This project takes two innovations previously theorized and tested, vortex cooling and aerospike nozzle, and combines them in a proof of concept prototype. First, the prototype was designed in Computer-Aided-Design and then validated in a Compusonal-Fluid-Dynamic simulation. Next, the design was fabricated out of mostly hardware store materials. The custom nozzle design was made through lost-PLA-casting. Then many tests were conducted with this prototype, and 4 data points were collected: nozzle temperature, combustion chamber temperature, chamber pressure, and thrust. The data collected showed the success of the vortex cooling method as the chamber temperature was much cooler than the nozzle temperature, and the success of the engine as a whole was validated by the thrust data. This project shows that a vortex aerospike design is a viable and useful idea, that a functioning rocket engine can be created relatively inexpensively and with widely available parts, and proves the idea that departing from typical rocket engine design can lead to beneficial findings.

1. In this research project, the student directly handled, manipulated, or interacted with (check ALL that apply):

human participants	potentially hazardous biological agents		
vertebrate animals	microorganisms	rDNA	tissue

2. I/we worked or used equipment in a regulated research institution or industrial setting (Form 1C):	YES	<input checked="" type="checkbox"/>	NO
3. This project is a continuation of previous research (Form 7):	YES	<input checked="" type="checkbox"/>	NO
4. My display board includes non-published photographs/visual depictions of humans (other than myself):	YES	<input checked="" type="checkbox"/>	NO
5. This abstract describes only procedures performed by me/us, reflects my/our own independent research, and represents one year's work only:	<input checked="" type="checkbox"/>	YES	NO
6. I/we hereby certify that the abstract and responses to the above statements are correct and properly reflect my/our own work.	<input checked="" type="checkbox"/>	YES	NO

The stamp or embossed seal attests that this project is in compliance with all federal and state laws and regulations and that all appropriate reviews and approvals have been obtained including the final clearance by the Scientific Review Committee.

